Recognizing String Graphs in NP

Marcus Schaefer Eric Sedgwick Daniel Štefankovič

Identification des graphes de corde dans NP

(Recognizing String Graphs in NP)

Marcus Schaefer Eric Sedgwick Daniel Štefankovič

The origin of the problem

Sinden 1966 Topology of Thin Film RC Circuits

	1	2	3	4
1		X		X
2	X		X	X
3		X		X
4	X	X	X	

Is G an intersection graph of a set of curves in the plane?

	1	2	3	4
1		X		X
2	X		X	X
3		X		X
4	X	X	X	

String Graphs

Planar graphs are string graphs (Sinden, 1966)

Recognizing string graphs is NP-hard (Kratochvíl, 1991)

Recognizing string graphs is decidable (in NEXP) (Pach, Tóth, 2000; Schaefer, Š, 2000)

Can G be drawn in the plane ?

red edge may intersect green edge
red edge may intersect orange edge
no other pair of edges may intersect

String Weak realizability (Matoušek, Nešetřil, Thomas'88)

Weak realizability

Input:Graph Gset R of pairs of edges

Output: Is there a drawing of G in the plane such that only pairs from R may intersect?

(e.g. R=0 corresponds to planarity testing)

Weak realizability

NP-hard (Kratochvíl '91) NEXP (Pach, Tóth '00; Schaefer, Š '00)

Theorem: If there is a drawing realizing (G,R) then there is a drawing with at most m2^m intersections where m is the number of edges of G.

The Theorem is tight (Kratochvíl, Matoušek '91)

edge properly embedded arc (parc)

isotopy rel endpoints = continuous
deformations not moving endpoins

Intersection number i(α,β) of two parcs α,β min{|a b|; a C(α), b C(β)}

(set of curves isotopic to α)

Lemma: On an orientable surface any collection of parcs can be redrawn so that any two parcs α , β intersect at most i(α , β) times.

encode the properly embedded arcs (up to isotopy)
for each pair α,β not in R check i(α,β)=0

Encoding the parcs 1) A triangulation T of M

Encoding the parcs 2) Normalization of the parc w.r.t. T

Encoding the parcs 3) Compute normal coordinates

Encoding the parcs

Parcs having the same normal coordinates are isotopic rel boundary.

Encoding the parcs Is it polynomial ?

construct a weak realizability problem including the triangulation and use

Theorem: If there is a drawing realizing (G,R) then there is a drawing with at most m2^m intersections where m is the number of edges of G.

Word equations x,y – variables xayxb=axbxy a,b - constants a solution x=aaaa v=b Word equations with given lengths xayxb=axbxy The size of the bit **X** =4 representation of the numbers counts V =1 to the size of the input **Word equations**

NP-hard in PSPACE (Plandowski '99)

Word equations with given lengths

in P (Plandowski, Rytter '98) the lexicographically smallest solution given by a straight line program

Coloring components of a curve

normal coordinates – can encode any embedded collection of closed curves and parcs (=curve)

x+y=a x+z=b y+z=c

The proof of weak realizability

- encode the properly embedded arcs (up to isotopy)
 for each pair α,β not in R check i(α,β)=0
 - Do coordinates of α encode a parc? Are parcs α , β isotopically disjoint?
 - check that both α , β are parcs
 - color one component of α + β by "b"
 - They are disjoint iff the component is either α or β

Are parcs α , β isotopically disjoint?

- check that both α , β are parcs
- color one component of α + β by "b"
- They are disjoint iff the component is either α or β

Are parcs α , β isotopically disjoint?

- check that both α , β are parcs
- color one component of α + β by "b"
- They are disjoint iff the component is either α or β

Consequences + other results pairwise crossing number NP existential theory of diagrams (topological inference) NP

A intersects B B intersects C A is disjoint from C

weak realizability on different surfaces Can be done in NP?